Armanuos, A. M., Al-Ansari, N. & Yaseen, Z. M. Underground barrier wall evaluation for controlling saltwater intrusion in sloping unconfined coastal aquifers. Water. 12 (9), 2403. https://doi.org/10.3390/w12092403 (2020).
Ghosh, A. & Bera, B. Potentialities and development of groundwater resources applying machine learning models in the extended section of Manbhum-Singhbhum. Plateau India HydroResearch. 7, 1–14. https://doi.org/10.1016/j.hydres.2023.11.002 (2024).
Faridatul, M. & Bari, M. Understanding the long-term changes in Groundwater Level—A tale of highly Urbanized City. J. Geogr. Inf. Syst. 13, 466–484. https://doi.org/10.4236/jgis.2021.134026 (2021).
Abdel-Shafy, H. I. & Kamel, A. H. Groundwater in Egypt issue: resources, location, amount, contamination, protection, renewal, future overview. Egypt. J. Chem. 59 (3), 321–362. https://doi.org/10.21608/ejchem.2016.1085 (2016).
Babidge, S. Sustaining ignorance: the uncertainties of groundwater and its extraction in the Salar De Atacama, northern Chile. J. Roy Anthropol. Inst. 25 (1), 83–102. https://doi.org/10.1111/1467-9655.12965 (2019).
Onipe, T., Edokpayi, J. N. & Odiyo, J. O. Geochemical characterization and assessment of fluoride sources in groundwater of Siloam area, Limpopo Province, South Africa. Sci. Rep. 11 (1), 1–19. https://doi.org/10.1038/s41598-021-93385-4 (2021).
Kumar, P. R., Gowd, S. S. & Krupavathi, C. Groundwater quality evaluation using water quality index and geospatial techniques in parts of Anantapur District, Andhra Pradesh, South India. HydroResearch. (2024). https://doi.org/10.1016/j.hydres.2024.01.001 (2024).
Mukhtar, A. Climate Change and Water Security: case of Pakistan. J. Secur. Strategic Analyses. 6 (1), 56–85 (2020).
Alam, S., Borthakur, A., Ravi, S., Gebremichael, M. & Mohanty, S. K. Managed aquifer recharge implementation criteria to achieve water sustainability. Sci. Total Environ. 768, 144992. https://doi.org/10.1016/j.scitotenv.2021.144992 (2021).
Monir, M. M., Sarker, S. C. & Islam, A. R. M. T. A critical review on groundwater level depletion monitoring based on GIS and data-driven models: Global perspectives and future challenges. HydroResearch, 7, 285–300. https://doi.org/10.1016/j.hydres.2024.05.001. (2024).
Tóth, J. A. Theoretical analysis of Groundwater Flow in small drainage basins. J. Geophys. Res. 68, 4795–4812 (1963).
Akther, H., Ahmed, M. S. & Rasheed, K. B. S. Spatial and temporal analysis of groundwater level fluctuation in Dhaka city, Bangladesh. J. Asian Earth Sci. 2 (2), 49–57 (2009).
Qureshi, A. S., Ahmed, Z. & Krupnik, T. J. Groundwater Management in Bangladesh: An Analysis of Problems and Opportunities. Cereal Systems Initiative for South Asia Mechanization and Irrigation (CSISA-MI) Project, Research Report No. 2. Dhaka (CIMMYT, 2015).
Hossain, M. I., Bari, M. N., Miah, S. U., Kafy, A. A. & Nasher, N. R. Application of modified managed aquifer recharge model for groundwater management in drought-prone water-stressed Barind Tract. Bangladesh Environ. Chall. 4, 100173 (2021).
Morris, B. L. et al. Assessing the extent of induced leakage to an urban aquifer using environmental tracers: an example from Bishkek, capital of Kyrgyzstan, Central Asia. Hydrogeol. J. 14, 225–243. https://doi.org/10.1007/s10040-005-0441-x (2005).
Taniguchi, M. et al. Submarine groundwater discharge: updates on its measurement techniques, geophysical drivers, velocity, and effects. Front. Environ. sci. 7, 141 (2019).
Dhakate, R., Guguloth, S. &, Srinivas, B. Hydrochemical appraisal of groundwater quality for drinking and agricultural utility in a granitic terrain of Maheshwaram area of Ranga Reddy district, Telnagana State, India. HydroResearch. 4, 11–23. https://doi.org/10.1016/j.hydres.2021.02.002 (2021).
Shah, T. The groundwater economy of South Asia: an assessment of size, significance and socio-ecological impacts. The agricultural groundwater revolution: Opportunities and threats to development, 7–36. (2007).
Richey, A. S. et al. Uncertainty in global groundwater storage estimates in a total Groundwater stress Framework. Water Resource Res. 51, 5198–5216. https://doi.org/10.1002/2015WR017351 (2015).
Goodarzi, M., Heidarpour, M. & Safavi, H. Development of a New Drought Index for Groundwater and its application in Sustainable Groundwater extraction. J. Water Resour. Plan. Manag. 142, 04016032. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000673 (2016).
Monir, M. M. & Sarker, S. C. Analyzing post-2000 groundwater level and rainfall changes in Rajasthan, India, using well observations and GRACE data. Heliyon. 10 (2), e24481. https://doi.org/10.1016/j.heliyon.2024.e24481 (2024).
Pathak, A. A. & Dodamani, B. M. Trend Analysis of Groundwater Levels and Assessment of Regional Groundwater Drought: Ghataprabha River Basin, India. Nat. Resour. Res. 28 (3), 631–643. https://doi.org/10.1007/s11053-018-9417-0 (2019).
Mukherjee, I. & Singh, U. K. Fluoride abundance and their release mechanisms in groundwater along with associated human health risks in a geologically heterogeneous semi-arid region of east India. Microchem J. 152, 104304. https://doi.org/10.1016/j.microc.2019.104304 (2020).
Todd, D. K. & Mays, L. W. Groundwater Hydrology (third ed. John Wiley & Sons Inc., 2005).
Afshar, A., Abedi, M., Norouzi, G. H. & Riahi, M. A. Geophysical investigation of underground water content zones using electrical resistivity tomography and ground penetrating radar: a case study in Hesarak-Karaj, Iran. Eng. Geol. 196, 183–193. https://doi.org/10.1016/j.enggeo.2015.07.022 (2015).
El-Zein, A. H., Carter, J. P. & Airey, D. W. Multiple-porosity contaminant transport by finite-element method. Int. J. Geomechan. 5 (1), 24–34 (2005).
Geraghty, J. J. Movement of Contaminants through Geologic Formations, 90 pp., Technical Division Activities, National Water Well Association, Urbana (1960).
Provost, A. M., Voss, C. I. & Neuzil, C. E. Glaciation and Regional Groundwater Flow in the Fennoscandian Shield: Site 94, SKI Rep. 96:11, Swed (Nucl. Power Insp, 1998).
Barone, V. A. Modeling the impacts of land use activities on the subsurface flow regime of the Upper Roanoke River Watershed. M.S. Thesis. Virginia Polytechnic Institute and State University, Blacksburg, Virginia, (2000).
Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow to large-scale groundwater depletion. Sci. Adv. 5 (6), eaav4574. https://doi.org/10.1126/sciadv.aav4574 (2019).
Hoaglund, J. R., Kolak, J. J., Long, D. T. & Larson, G. J. Analysis of modern and pleistocene hydrologic exchange between Saginaw Bay (Lake Huron) and the Saginaw lowlands area. Geol. Soc. Am. Bull. 116 (1–2), 3–15. https://doi.org/10.1130/B25290.1 (2004).
Pal, S. C. et al. Application of data-mining technique and hydro-chemical data for evaluating vulnerability of groundwater in Indo-Gangetic Plain. J. Environ. Manage. 318, 115582. https://doi.org/10.1016/j.jenvman.2022.115582 (2022).
Pavlov, G. & Olesen, B. W. Thermal energy storage – A review of concepts and systems for heating and cooling applications in buildings: Part1 – seasonal storage in the ground. HVAC&R Res. 18, 515–538. https://doi.org/10.1080/10789669.2012.667039 (2012).
Peng, K., Li, X. & Wang, Z. Hydrochemical Characteristics of Groundwater Movement and Evolution in the Xinli Deposit of the Sanshandao Gold Mine using FCM and PCA methods. Environ. Earth Sci. 73, 7873–7888. https://doi.org/10.1007/s12665-014-3938-6 (2015).
Baublys, K. A. et al. Geochemical influences on methanogenic groundwater from a low rank coal seam gas reservoir: Walloon Subgroup, Surat Basin. Int. J. Coal Geol. 246, 103841. https://doi.org/10.1016/j.coal.2021.103841 (2021).
Lloyd, J. W. & Farag, M. H. Fossil groundwater gradients in arid regional sedimentary basins. Ground Water. 16, 388–393. https://doi.org/10.1111/j.1745-6584.1978.tb03251.x (1978).
Matsumoto, T. et al. Krypton-81 dating of the deep Continental Intercalaire aquifer with implications for chlorine-36 dating. Earth Planet. Sci. Lett. 535, 116120. https://doi.org/10.1016/j.epsl.2020.116120 (2020).
Garven, G. & Freeze, R. A. Theoretical analysis of the role of groundwater flow in the genesis of strata-bound ore deposits: 1. Mathematical and numerical model. Am. J. Sci. 284, 085–1124 (1984).
Garven, G. & Freeze, R. A. Theoretical analysis of the role of groundwater flow in the genesis of strata-bound ore deposits: 2. Quantitative results. Am. J. Sci. 284, 1124–1156 (1984).
McKnight, U. S. et al. An integrated model for assessing the risk of TCE groundwater contamination to human receptors and surface water ecosystems. Ecol. Eng. 36 (9), 1126–1137 (2010).
Shamsudduha, M., Marzen, L. J., Uddin, A., Lee, M. K. & Saunders, J. A. Spatial relationship of groundwater arsenic distribution with regional topography and water-table fluctuations in the shallow aquifers in Bangladesh. Environ. Geol. 57 (7), 1521–1535. https://doi.org/10.1007/s00254-008-1429-3 (2009).
Ali, M. H., Abustan, I., Rahman, M. A. & Haque, A. A. M. Sustainability of groundwater resources in the North-Eastern Region of Bangladesh. Water Resour. Manag. 26 (3), 623–641. https://doi.org/10.1007/s11269-011-9936-5 (2012).
Serajul, M., Farzeen, I. & Islam, F. Spatial Disparity of Groundwater Depletion in Dhaka City. 15th International Conference on Environmental Science and Technology, May. (2017). https://cest.gnest.org/sites/default/files/presentation_file_list/cest2017_01087_poster_paper.pdf
Sresto, M. A., Siddika, S., Haque, M. N. & Saroar, M. Application of fuzzy analytic hierarchy process and geospatial technology to identify groundwater potential zones in north-west region of Bangladesh. Environ. Chall. 5, 100214. https://doi.org/10.1016/j.envc.2021.100214 (2021).
Chinnasamy, P., Hsu, M. J. & Govindasamy, A. Satellite-based analysis of Groundwater Storage and Depletion trends Implicating Climate Change in South Asia: need for Groundwater Security. In Civil Engineering for Disaster Risk Reduction (17–26). Springer, Singapore. (2022).
Tulip, S. S. et al. T. The impact of irrigation return flow on seasonal groundwater recharge in northwestern Bangladesh. Agric. Water Manag. 266, 107593. https://doi.org/10.1016/j.agwat.2022.107593 (2022).
Salam, R., Islam, A. R. M. T. & Islam, S. Spatiotemporal distribution and prediction of groundwater level linked to ENSO teleconnection indices in the northwestern region of Bangladesh. Environ. Dev. Sustain. 22 (5), 4509–4535. https://doi.org/10.1007/s10668-019-00395-4 (2020).
Rashid, A. et al. Assessing and forecasting of groundwater level fluctuation in Joypurhat district, northwest Bangladesh, using wavelet analysis and ARIMA modeling. Theor. Appl. Climatol. 150 (1), 327–345. https://doi.org/10.21203/rs.3.rs-1001988/v1 (2022).
Rahman, M. S., Reza, A. S., Ahsan, M. A. & Siddique, M. A. B. Arsenic in groundwater from Southwest Bangladesh: sources, water quality, and potential health concern. HydroResearch. 6, 1–15. https://doi.org/10.1016/j.hydres.2022.12.001 (2023).
Mojid, M. A., Mainuddin, M., Ibn Murad, K. F. & Kirby, J. Water usage trends under intensive groundwater-irrigated agricultural development in a changing climate – evidence from Bangladesh. Agric. Water Manag. https://doi.org/10.1016/j.agwat.2021.106873 (2021).
Yidana, S. M., Alfa, B., Banoeng-Yakubo, B. & Addai, M. O. Simulation of groundwater flow in a crystalline rock aquifer system in Southern Ghana—An evaluation of the effects of increased groundwater abstraction on the aquifers using a transient groundwater flow model. Hydrol. Process. 28, 1084–1094. https://doi.org/10.1002/hyp.9644 (2012).
Zhou, Y. & Li, W. A review of regional groundwater flow modeling. Geosci. Front. 2 (2), 205–214. https://doi.org/10.1016/j.gsf.2011.03.003 (2011).
Darcy, H. Les Fontaines Publiques de la ville de Dijon (Dalmont, 1856).
Nzeribe, B. N. et al. Hydraulic performance of the horizontal reactive media treatment well: pilot and numerical study. Ground Water Monit. Remediat. 40 (3), 30–41 (2020).
ESRI Annual Report Dublin: ESRI, (2017). https://www.esri.ie/publications/esri-annual-report-2017. (2018).
Freeze, R. A., Cherry, J. A. & Groundwater Prentice-Hall, Englewood Cliffs, New Jersey. (1979).
Chaturvedi, A. et al. Exploring new correlation between hazard index and heavy metal pollution index in groundwater. Ecol. Indic. 97 (April 2018), 239–246. https://doi.org/10.1016/j.ecolind.2018.10.023 (2019).
Zafor, M. A., Alam, M. J., Rahman, M. A. & Amin, M. The analysis of groundwater table variations in Sylhet region, Bangladesh. Environ. Eng. Res. 22. https://doi.org/10.4491/eer.2016.152 (2017).
Shamsudduha, M., Zahid, A. & Burgess, W. G. Security of deep groundwater against arsenic contamination in the Bengal Aquifer System: a numerical modeling study in southeast Bangladesh. Sustain. Water Resour. Manag. 5 (3), 1073–1087. https://doi.org/10.1007/s40899-018-0275-z (2019).
Rahman, A. T. M. et al. Modeling the changes in Water Balance Components of highly Irrigated Western Part of Bangladesh. Hydrol. Earth Syst. Sci. Discuss. 1–24. https://doi.org/10.5194/hess-2017-523 (2017).
Rahman, A. T. M., Jahan, C., Mazumder, Q., Kamruzzaman, M. & Hosono, T. Drought Analysis and its implication in Sustainable Water Resource Management in Barind Area, Bangladesh. J. Geol. Soc. India. 89, 47–56. https://doi.org/10.1007/s12594-017-0557-3 (2017).
Jahan, C. S., Mazumder, Q. H., Islam, A. R. T. M. & Adham, M. I. Impact of irrigation in Barind area, NW Bangladesh—an evaluation based on the meteorological parameters and fluctuation trend in groundwater table. J. Geol. Soc. India. 76 (2), 134–142 (2010).
Hossain, M. I., Bari, M. N., Kafy, A. A., Rahaman, Z. A. & Rahman, M. T. Application of double lifting method for river water irrigation in the water stressed Barind Tract of northwest Bangladesh. Groundw. Sustain. Dev. 100787. https://doi.org/10.1016/j.gsd.2022.100787 (2022).
Monir, M. M., Sarker, S. C. & Islam, M. N. Assessing the changing trends of Groundwater Level with Spatiotemporal Scale at the Northern Part of Bangladesh integrating the MAKESENS and ARIMA models. Model. Earth Syst. Environ. 10, 443–464. https://doi.org/10.1007/s40808-023-01794-3 (2023).
Monir, M. M. et al. M. T. Groundwater level fluctuations and associated factors in Rangpur district, Bangladesh, using modified Mann-Kendall and GIS-based AHP technique. Theor. Appl. Climatol. 153 (3–4), 1323–1339. https://doi.org/10.1007/s00704-023-04541-x (2023).
Mainuddin, M., Kirby, M., Chowdhury, R. A. R. & Shah-Newaz, S. Spatial and temporal variations of, and the impact of climate change on, the dry season crop irrigation requirements in Bangladesh. Irrig. Sci. 33. https://doi.org/10.1007/s00271-014-0451-3 (2014).
Khan, F. H. Geology of Bangladesh. The University Press Limited, Dhaka-1000, Bangladesh. (1991).
BWDB. Bangladesh Water Development Board. Final Report: Study on Developing Operational Shadow Prices for Water to Support Informed Policy and Investment Decision Making Processes. (2021). warpo.portal.gov.bd
De Marsily, G. Quantitative Hydrogeology (Academic, 1986).
Keller, J. B. Darcy’s law for flow in porous media and the two-space method. In Nonlinear Partial Differential Equations in Engineering and Applied Science (429–443). Routledge. (2017).
Orodu, O., Tang, Z. & Anawe, P. Sidetrack and recompletion risk evaluation — waterflooded reservoir. J. Pet. Sci. Eng. 78, 705–718. https://doi.org/10.1016/j.petrol.2011.08.015 (2011).
Chakraborty, S., Kumar Govindarajan, S., Gummadi, N., NUMERICAL INVESTIGATION OF MICROBIAL TRANSPORT IN A SATURATED, S. & RESERVOIR SYSTEM. 304. Poster session presented at 8th International Groundwater. Conference on Sustainable Management of Soil-Water Resources, Uttarakhand, India. http://117.252.14.250:8080/jspui/bitstream/123456789 (2019).
Teng, H. & Zhao, T. S. An extension of Darcy’s law to non-stokes flow in porous media. Chem. Eng. Sci. 55 (14), 2727–2735 (2000).
Bear, J. Hydraulics of Groundwater (McGraw-Hill International Book, 1979).
Hester, E. T. & Doyle, M. W. In-stream geomorphic structures as drivers of hyporheic exchange. Water Resour. Res. 44 (3). https://doi.org/10.1029/2006WR005810 (2008).
Macnamara, C. K., Caiazzo, A., Ramis-Conde, I. & Chaplain, M. A. Computational modelling and simulation of cancer growth and migration within a 3D heterogeneous tissue: the effects of fibre and vascular structure. J. Comput. Sci. 40, 101067. https://doi.org/10.1016/j.jocs.2019.101067 (2020).
Murrone, A. & Guillard, H. A five equation reduced model for compressible two phase flow problems. J. Comput. Phys. 202 (2), 664–698 (2005).
Lerner, D. N. Groundwater recharge. In Geochemical Processes, Weathering and Groundwater Recharge in Catchments (109–150). CRC. (2020).
Cuthbert, M. O., Mackay, R. & Nimmo, J. R. Linking soil moisture balance and source-responsive models to estimate diffuse and preferential components of groundwater recharge. Hydrol. Earth Syst. Sci. 17 (3), 1003–1019. https://doi.org/10.5194/hess-17-1003-2013 (2013).
Mann, H. B. Nonparametric tests against trend. J. Econom. 13 (3), 245–259 (1945).
Kendall, M. G. Rank Correlation MethodsCharles Grifn, (1975). (1975).
Drapela, K. & Drapelova, I. Application of Mann-Kendall test and the Sen’s slope estimates for trend detection in deposition data from Bily Kriz (Beskydy Mts., the Czech Republic) 1997–2010. Beskydy. 4, 133–146 (2011).
Anand, B., Karunanidhi, D., Subramani, T., Srinivasamoorthy, K. & Suresh, M. Long-term trend detection and spatiotemporal analysis of groundwater levels using GIS techniques in lower Bhavani river basin, Tamil Nadu, India. J. Environ. Dev. Sustain. 22 (4), 2779–2800. https://doi.org/10.1007/s10668-019-00318-3 (2020).
Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. Am. Stat. Assoc. 63, 1379–1389. https://doi.org/10.1080/01621459.1968.10480934 (1968).
Mastrocicco, M., Gervasio, M. P., Busico, G. & Colombani NNatural and anthropogenic factors driving groundwater resources salinization for agriculture use in the Campania plains (Southern Italy). Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.144033 (2020).
Baulon, L. et al. Influence of low-frequency variability on groundwater level trends. J. Hydrol. 606, 127436. https://doi.org/10.1016/j.jhydrol.2022.127436 (2022).
Peng, C. et al. Factors affecting coalbed methane (CBM) well productivity in the Shizhuangnan block of southern Qinshui basin, North China: investigation by geophysical log, experiment and production data. Fuel. 191, 427–441 (2017).
Githinji, T. W., Dindi, E. W., Kuria, Z. N. & Olago, D. O. Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng’iro–Lagh Dera Basin, Kenya. HydroResearch, 5, 22–34. (2022). https://doi.org/10.1016/j.hydres.2021.11.001
Brammer, H. Agricultural Disaster Management in Bangladesh (University, 1999).
Russo, T. A. & Lall, U. Depletion and response of deep groundwater to climate-induced pumping variability. Nat. Geosci. 10, 105–108. https://doi.org/10.1038/ngeo2883 (2017).
Gurdak, J. J. et al. Climate Variability Controls on Unsaturated Water and Chemical Movement, High Plains Aquifer, USAAll rights reserved. No part of this periodical may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Vadose Zone J. 6 (3), 533–547. https://doi.org/10.2136/vzj2006.0087 (2007).
Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ. Res. Lett. 4 (3), 035006. https://doi.org/10.1088/1748-9326/4/3/035006 (2009).
Karanth, K. R. Ground Water Assessment Development and Management (McGraw Hill Publishing Company Ltd., 1987).
Manepalli, T. S. & Subramanian, C. Time Series Analysis of large Scale Rainfall Data using regression automata models. Int. J. Intell. Eng. Syst. 11, 118–127 (2018).
Adnan, R. M. et al. Modeling groundwater level fluctuations by ELM merged advanced metaheuristic algorithms using hydroclimatic data. Geocarto Int. https://doi.org/10.1080/10106049.2022.2158951 (2022).
Todd, D. K. Groundwater Hydrology, Second Edition, Wiley, New York. (1980).
Freeze, R. A. & Three-Dimensional Transient, saturated-unsaturated Flow in a Groundwater Basin. Water Resour. Res. 7, 347–366. https://doi.org/10.1029/WR007i002p00347 (1971).
Hirsch, R. & Slack, J. Non-parametric Trend Test for Seasonal Data with serial dependence. Water Resour. Res. 20, 727–732. https://doi.org/10.1029/WR020i006p00727 (1984).
Reisenauer, H. P., Maier, D., Reimann, A. & Hoffmann, R. W. Cyclopropenylidene, 23(8), 641–641. https://doi.org/10.1002/anie.198406411 (1984).
Huyakorn, P. S., Panday, S. & Wu, Y. S. A three-dimensional multiphase flow model for assessing NAPL contamination in porous and fractured media, 1. Formulation. J. Contam. Hydrol. 16 (2), 109–130. https://doi.org/10.1016/0169-7722(94)90048-5 (1994).
Gupta, N. K. & Gupta, B. N. Effect of feeding formaldehyde-treated groundnut cake on the growth and nutrient utilization in Karan Swiss calves. Indian J. Anim. Sci. 54 (11), 1065–1068 (1984).
Aziz, M. A. et al. Groundwater depletion with expansion of irrigation in Barind tract: a case study of Rajshahi district of Bangladesh. Int. J. Geol. Agric. Environ. Sci. 3, 32–38 (2015). ISSN: 2348 – 0254.
Graven, G., Ge, S., Person, M. A. & Sverjensky, D. A. Genesis of strata-bound ore deposits in the midcontinent basins of North America: 1. The role of regional groundwater flow. Am. J. Sci. 293, 497–568 (1993).
Yidana, S. M. & Chegbeleh, L. P. The hydraulic conductivity field and groundwater flow in the unconfined aquifer system of the Keta Strip, Ghana. J. Afr. Earth Sci. 86, 45–52. https://doi.org/10.1016/j.jafrearsci.2013.06.009 (2013).
Chandniha, S. K. & Kansal, M. L. Rainfall estimation using multiple linear regression based statistical downscaling for Piperiya watershed in Chhattisgarh. J. Agrometeorology. 18 (1), 106–112 (2016).
Abdullah, T. O., Ali, S. S., Al-Ansari, N. A., Knutsson, S. & Laue, J. Velocity and direction of Groundwater Seepage Velocity in different soil and rock materials. Engineering. 12 (04), 242–253. https://doi.org/10.4236/eng.2020.124020 (2020).
Yeh, G. On the computation of darcian velocity and mass balance in the finite element modeling of groundwater flow. Water Resour. Res. 17 (5), 1529–1534. https://doi.org/10.1029/wr017i005p01529 (1981).
Ahmad, M. et al. Measurement of groundwater flow velocity at Chashnupp unit-2 site using radiotracer technique (No. PINSTECH–207). Pakistan Institute of Nuclear Science and Technology. (2008).
Parvin, M. The rate of decline and Trend Line Analysis of Groundwater underneath Dhaka and Gazipur City. J. Water Resource Prot. 11 (03), 348–356. https://doi.org/10.4236/jwarp.2019.113020 (2019).
Islam, M. T. A. & Study on Barind Aquifer-Ganges River Interaction. Master of Engineering in Water resources. Department Water Resour. Eng. Bangladesh Univ. Eng. Technol. (2009).
Zahid, A. & Ahmed, U. Groundwater resources development in Bangladesh: Contribution to irrigation for food security and poverty alleviation. (2006).
Adhikary, S. K., Sharif, A. A., Das, S. K. & Saha, G. C. Geostatistical analysis of groundwater level fluctuations in the shallow aquifer of northwestern Bangladesh. In Proceedings of the 2nd International Conference on Civil Engineering for Sustainable Development (ICCESD) (Vol. 14, No. 16, 390–399) (2014).
Stuyfzand, P. Patterns in groundwater chemistry resulting from groundwater flow. Hydrogeol. J. 7, 15–27. https://doi.org/10.1007/s100400050177 (1999).
Jemai, H., Ellouze, M., Abida, H. & Laignel, B. Spatial and temporal variability of rainfall: case of Bizerte-Ichkeul Basin (Northern Tunisia). J. Arab. J. Geosci. https://doi.org/10.1007/s12517-018-3482-x (2018).
Monir, M. M. et al. R. M. T. Spatiotemporal analysis and predicting rainfall trends in a tropical monsoon-dominated country using MAKESENS and machine learning techniques. Sci. Rep. 13, 13933. https://doi.org/10.1038/s41598-023-41132-2 (2023).
Feng, W. et al. Evaluation of groundwater depletion in North China using the gravity recovery and climate experiment (GRACE) data and ground-based measurements. Water Resour. Res. 49 (4), 2110–2118. https://doi.org/10.1002/wrcr.20192 (2013).
Akhtar, F. et al. Evaluation of GRACE derived groundwater storage changes in different agro-ecological zones of the Indus Basin. J. Hydrol. 605July 127369. (2021). https://doi.org/10.1016/j.jhydrol.2021.127369 (2022).
Baishya, A. et al. Spatiotemporal Analysis and Trend Detection of Groundwater Levels Using Gis Techniques in Nadia District of West Bengal. J Geol Soc India. 99, 868–874 (2023). https://doi.org/10.1007/s12594-023-2394-x (2023).
Changming, L., Jingjie, Y. & Kendy, E. Yeraltı Suyu İşletmeciliği ve Çevreye Etkisi Kuzey Çin Ovasında Çevre – Groundwater exploitation and its impact on the environment in the North China Plain. Water Int. 26 (2), 265–272 (2001).
Cotterman, K. A., Kendall, A. D., Basso, B. & Hyndman, D. W. Groundwater depletion and climate change: future prospects of crop production in the Central High Plains Aquifer. Clim. Change. 146 (1–2), 187–200. https://doi.org/10.1007/s10584-017-1947-7 (2018).
Konikow, L. F. & Kendy, E. Groundwater depletion: a global problem. Hydrogeol. J. 13 (1), 317–320. https://doi.org/10.1007/s10040-004-0411-8 (2005).
Erban, L. E., Gorelick, S. M. & Zebker, H. A. Groundwater extraction, land subsidence, and sea-level rise in the Mekong Delta. Vietnam; Environ. Res. Lett. 9 (8). https://doi.org/10.1088/1748-9326/9/8/084010 (2014).
Smith, R., Knight, R. & Fendorf, S. Overpumping leads to California groundwater arsenic threat. Nat. Commun. 9 (1): (2089). https://doi.org/10.1038/s41467-018-04475-3 (2018).
Bagchi, S. Arsenic threat reaching global dimensions. CMAJ. 177 (11), 1344–1345 (2007).